Сооружения по удалению из воды железа, марганца и кремния

При эксплуатации сооружений, применяемых для обезжелезивания воды, необходимо следить: за полнотой процесса удаления из воды СО2 и насыщения ее кислородом (при аэрации воды); за высотой слоев насадки, числом их и размерами кусков насадки в контактных и вентиляторных градирнях; за временем пребывания воды в сборных и контактных резервуарах (оптимальное — 30—60 мин); за оптимальным значением РН, при котором наиболее интенсивно протекают процессы гидролиза, окисления и хлопьеобразования железосодержащих веществ; за состоянием отверстий в дренажных системах фильтров. Чтобы улучшить отмывку верхнего слоя песка в фильтрах от задержанных железистых загрязнений, следует предусмотреть устройство для поверхностной промывки или продувки фильтрующего слоя воздухом.

Один раз в год следует отбирать пробы фильтрующего материала для определения загрязненности. Не реже двух раз в год желательно проверять убыль загрузки фильтров путем измерения расстояния до кромки желобов. При значительных потерях эти материалы догружают, предварительно удалив на 3—5 см загрязненный слой.

Использование для обезжелезивания катионитов целесообразно в тех случаях, когда одновременно с обезжелезиванием требуется и умягчение воды. При этом необходимо учитывать следующее: на катионитах может быть задержано железо, находящееся только в ионной форме; попадание воздуха в воду должно быть исключено, так как в противном случае образуется нерастворимый гидрат окиси железа. Железо, присутствующее в воде в виде органических комплексов и коллоидной гидроокиси, оказывает отрицательное действие на катионит, вызывая снижение обменной емкости.

Марганец по своим свойствам приближается к железу, поэтому для удаления его применяются те же способы и сооружения, что и для удаления железа.

Обескремнивание воды достигается переводом соединений кремнекислоты в коллоидные соединения с последующей ее коагуляцией и осаждением взвесей.

Обескремнивание осуществляется реагентным и анионитовым способами. В качестве реагентов используются известь, соли железа (FeS04, FeCl3 и др.), соли алюминия [A12(S04)3, NaA102, Mg(A102)2], гидроокись магния, обожженный доломит, каустический магнезит, гранулированная окись магния, магнезиальный сорбент (ВНИИ ВОДГЕО) и др. Процесс образования коллоидов гидроокиси кремния и их коагулирование значительно ускоряются при повышении РН до 8,5— 10 и температуры воды до 90—95 °С.

Для обескремнивания воды анионитами применяются сильно-и среднеосновные аниониты в ОН-форме; применение слабоосновных анионитов возможно при предварительном превращении слабой кремниевой кислоты в сильную кремнефтористую кислоту.

 

Потребление воды на производственные нужды промышленности

Как методы использования воды на нужды производства, так и определение требуемых для производства количеств и качеств воды всецело зависят от характера технологического процесса.

Вода используется в производстве для весьма разнообразных целей. В качестве основных категорий производственного водопотребления могут быть названы: использование воды для охлаждения, для промывки, замочки, увлажнения, для парообразования, для гидротранспорта, в составе производимой продукции и т. д. Использование воды для охлаждения имеет масштабы, значительно превосходящие масштабы всех остальных видов потребления воды, причем удельный вес этой категории в общем объеме производственного водоснабжения продолжает расти. К этой категории относятся расходование воды для конденсации пара, отходящего от паровых турбин электростанций, и использование воды для охлаждения различных печей, машин и аппаратуры (металлургическая, нефтеперерабатывающая, химическая промышленность и др.). Вода для промывки, замочки и т. п. расходуется в больших количествах на нужды бумажной, целлюлозной, шерстеобрабатывающей, текстильной промышленности, промышленности искусственного волокна и др. Расходование воды на гидротранспорт различных материалов имеет место в самых разнообразных отраслях промышленности (в том числе шлако- и золоудаление на теплосиловых станциях, транспортирование шлака в доменных цехах, отходов обогатительных фабрик и т. д.).

Требуемые для производственных целей количества воды определяются в результате технологических расчетов, так же как и требуемые количества топлива, пара, электроэнергии и т. п., и в значительной степени зависят (изменяются) от принятой схемы технологического процесса, типа используемого оборудования и др.

Приводимые в литературе удельные нормы расхода воды на единицу продукции, полученные в результате обработки и осреднения фактических данных о расходовании воды промышленностью, могут использоваться лишь для приближенных предварительных расчетов по определению предполагаемых объемов производственного водопотребления.

Одной из специфических особенностей производственного водопотребления является зависимость в ряде случаев количества используемой воды от ее качества, в частности (и наиболее часто) от ее температуры. Так, вода, используемая для целей охлаждения, должна отводить от охлаждаемой среды (оборудования) определенное количество тепла (в единицу времени). Чем меньшую температуру имеет используемая вода, тем, очевидно, меньше ее потребуется для того же охладительного эффекта. Это обстоятельство обусловливает изменение расхода охлаждающей воды по сезонам года: зимой он меньше, чем летом.

Исключительно важное значение для многих отраслей промышленности имеет соблюдение требований относительно допустимого содержания в используемой воде различных веществ. Требования эти весьма различны для различных технологических процессов и в количественном и в качественном отношении.

Так, вода, используемая для охлаждения, должна не засорять трубки холодильников, не обладать коррозионными свойствами и (как уже сказано) иметь по возможности низкую температуру. Значительная жесткость охлаждающей воды также нежелательна из-за возможности интенсивного отложения солей на стенках холодильников.

Вода, используемая для промывочных целей, не должна содержать веществ, отрицательно влияющих на промываемый материал; нежелательно содержание в ней солей, вызывающих увеличение расхода моющих веществ. Для некоторых химических производств требуется удаление из воды различных солей, глубокое осветление воды, удаление из нее растворенных газов и т. п. Выполнение требований производства к качеству используемой воды обеспечивает повышение качества и удешевление продукции.

Следует отметить, что ряд современных производственных потребителей предъявляет к качеству используемой воды столь высокие требования, что им не может удовлетворять ни один природный источник водоснабжения. Эти требования могут быть выполнены только в результате искусственной обработки воды. К таким производственным потребителям относятся, например, современные паровые котлы высокого давления, промышленность полупроводников и др.

Режим расходования воды на производственные нужды определяется режимом работы промышленного предприятия и методами использования воды. В некоторых случаях (в частности, при использовании воды для охлаждения) расходование воды идет почти равномерно в течение суток. Иногда вода расходуется периодически для наполнения в заданное время различных баков, ванн и т. п.

Кроме изменения интенсивности расходования воды в течение суток, в ряде случаев для производственного водоснабжения необходимо учитывать отмеченные выше сезонные колебания водопотребления.

Требования отдельных производственных потребителей к свободным напорам на вводах весьма различны и зависят от типа используемого оборудования, высоты производственных зданий и т. п. В некоторых случаях для отдельных агрегатов, требующих подачи воды под повышенными напорами, представляется целесообразным устраивать местные повысительные установки. Недопустимое снижение давлений в водопроводной сети может повлечь за собой снижение расходов воды, подаваемой к охлаждающим установкам, их перегрев или порчу продукции.

Весьма важное значение имеет обеспечение достаточной надежности систем производственного водоснабжения. Ряд предприятий не допускает не только перерыва (даже кратковременного) в подаче воды, но и всякого снижения подачи. Нарушение установленного режима подачи воды может привести к серьезным авариям оборудования, причиняющим большой материальный ущерб и опасным для жизни людей; изменение режима подачи или изменение качества подаваемой воды может повлечь за собой ухудшение качества (брак) продукции или расстройство оборудования. Таким образом, обеспечение высокой надежности систем производственного водоснабжения необходимо и с социальной, и с экономической точки зрения.

 

Особенности систем производственного водоснабжения.

Указанные выше требования производственных потребителей к обеспечению их водой (объемы водопотребления, требования к качеству воды и высокие требования к надежности) обусловливают особый подход к выбору источника и системы водоснабжения. Большая стоимость систем водоснабжения крупных промышленных предприятий вызывает необходимость весьма глубокого технико-экономического анализа возможных вариантов решения этой проблемы для выбора оптимального варианта.

Для некоторых крупных производственных объектов требуются столь большие расходы воды, что часто местных водных источников оказывается недостаточно. Между тем место расположения многих промышленных предприятий в значительной степени диктуется наличием источников сырья, месторождений полезных ископаемых, местного топлива и т. д. В подобных условиях приходится обращаться к использованию удаленных источников воды, достаточно мощных для удовлетворения потребностей предприятия. Транспортирование больших количеств воды на большие расстояния требует затрат весьма значительных средств на строительство и эксплуатацию соответствующих сооружений. Иногда возникает вопрос о том, где же выгоднее (экономичнее) располагать предприятие — ближе к источникам сырья (топлива) или ближе к источникам воды. В отношении ряда отраслей промышленности (горнорудной, металлургической и т. п.) вопрос решается в пользу расположения предприятия вблизи источников сырья. Однако в некоторых случаях, например при выборе места расположения тепловых электростанций, может оказаться экономически целесообразнее располагать их ближе к источникам воды, чем к источникам топлива. Сокращение дальности транспортирования воды к объекту всегда повышает, кроме того, надежность системы водоснабжения. Таким образом, самый выбор места расположения промышленного предприятия может зависеть от возможности его водообеспечения.

При выборе места расположения промышленного предприятия необходимо также учитывать возможное влияние его на местные природные водоемы. Сточные воды промышленных предприятий часто бывают сильно загрязнены, а иногда и токсичны. Надлежащая очистка больших количеств сточных вод связана с весьма большими затратами. Сброс же сточных вод без достаточной очистки вызывает недопустимое загрязнение водоемов. Закон об охране вод устанавливает очень строгие правила по предупреждению загрязнения природных водоемов сточными водами.

Как локальная недостаточность водных ресурсов, так и необходимость резкого уменьшения стоков обусловливают широкое применение в производстве оборотного водоснабжения и повторного использования воды. Сокращение расходов «свежей» воды приобретает не только экономическое, но и гигиеническое значение. Рационализация использования природной воды в производстве может в ряде случаев привести к созданию полностью замкнутых циклов водооборота, при которых практически требуются минимальные отборы свежей воды из источника.

В практике производственного водоснабжения получили широкое применение системы последовательного использования воды. Эти системы устраивают, когда качество воды, сбрасываемой одним потребителем, допускает ее использование другими потребителями.

Так, потребитель сбрасывает воду нагретую, но не загрязненную. Она может быть использована потребителями. Если количество воды, сбрасываемой потребителем, превышает потребность цехов, ее избыток может поступать в общий сток.

В некоторых случаях вода из оборотного цикла одного потребителя после охлаждения частично используется для группы других потребителей, т. е. имеет место комбинация оборотного водоснабжения и последовательного использования воды.

Системы последовательного использования воды позволяют значительно сократить подачу свежей воды из источника и снизить затраты на водоснабжение предприятия в целом.

На крупных предприятиях, занимающих весьма большую территорию, иногда оказывается рентабельным разделение системы их оборотного водоснабжения на несколько отдельных систем — по группам цехов с устройством нескольких блоков охлаждающих сооружений и насосных станций. Такая децентрализация позволяет снизить затраты на сооружение водоводов и магистралей в пределах площадки, сократить суммарные расходы энергии на подачу воды и одновременно повысить надежность водоснабжения.

В ряде случаев в системе производственного водоснабжения отдельные потребители (цехи) требуют подачи им воды под существенна различными напорами. Тогда в целях снижения расходов энергии на подачу воды для отдельных групп производственных потребителей устраивают отдельные сети разных напоров, т. е. применяют своеобразное зонирование системы водоснабжения.

Таким образом, на одной промышленной площадке могут быть сооружены отдельные системы для подачи воды различного качества, разных температур и разных давлений.

 

Общие требования к зданиям и сооружениям

Основные здания и сооружения водопроводно-канализационного и газового хозяйства (насосные станции, очистные сооружения, подземные резервуары, камеры, водонапорные башни, газо-регуляторные пункты и др.) в течение первого года эксплуатации должны находиться под постоянным наблюдением. Необходимо ежемесячно осуществлять контроль за их осадкой путем установки постоянных и временных реперов.

Начиная со второго года эксплуатации контроль производится по плану, утверждаемому Управлением водопроводно-канализационного и газового хозяйства, в сроки, устанавливаемые в зависимости от местных условий и состояния объектов. На предприятии для каждого здания и сооружения ведется паспорт, куда заносят все замечания при их обследовании, а также дату проведения ППО, ППР, текущего и капитального ремонта с описанием выполненных работ. Особое внимание должно быть уделено наблюдению за осадкой фундаментов/основного оборудования (насосов, электродвигателей, двигателей внутреннего сгорания, воздуходувок и др.) и за возможными трещинами на них от вибрации. Необходимо вести систематическое наблюдение за состоянием опор, упоров на концах или в местах поворотов трубопроводов в зданиях, колодцах и камерах. При обнаружении осадок зданий, колодцев и камер необходимо обращать внимание на состояние эластичной заделки труб в проходах через стены для предотвращения переломов трубопроводов или возможного проникновения газа в подвальные помещения.

В зданиях, сооружениях водопровода и канализации должен поддерживаться оптимальный температурно-влажностный режим, обеспечиваемый действием отопительно-вентиляционных систем. Трубопроводы и арматура водопровода, канализации, отопления, вентиляции и газоснабжения, расположенные в местах с пониженной температурой, должны быть изолированы. Периодически следует проверять состояние изоляции и производить необходимый ремонт.

 

Обеззараживание воды озонированием и другими способами

Для действия озона на примеси, находящиеся в воде, необходимо смешивать его с водой. В настоящее время применяются два  способа:

а)смешивание с помощью эмульгаторов (эжекторов). Этот способ прост, но требует пропуска через эжектор всей обрабатываемой воды, что ведет к дополнительным расходам электро энергии;

б) подача озонированного воздуха через дырчатые трубы, размещенные в нижней части контактной колонны. Поток воды в колонне направляется сверху вниз. Время контакта обеззараживаемой воды озоном принимается равным 5 мин. Доза озона зависит от назначения озонирования воды: если озон вводится только для обеззараживания воды (после очистки воды), то доза озона может составлять 0,6—1,5 мг/л, если же озон предназначается и для других целей (например, для обесцвечивания воды, удаления сероводорода, обезжелезивания и т. д.), то доза озона может доходить до 4—5 мг/л.

Озон малорастворим в воде: при давлении 0,1 МПа на 1 Я воды при t = 0°С растворяется 1,42 г, при 10 °С — 1,04 г, при 30 °С — всего 0,45 г. Диссоциация озона довольно быстро протекает в щелочных растворах, а в кислотных он проявляет высокую стойкость. Озон является отравляющим веществом раздражающего и общего действия. Для безопасности обслуживающего персонале содержание озона в помещении должно быть не более 0,0001 мг/л. Пребывание человека помещении, где концентрация озона в воздухе составляет 0,001 мг/л, может быть только кратковременным; доза озона 0,018 мг/л вызывает удушье.

Все элементы установок и оборудования, с которыми соприкасается озон, должны быть устойчивы к нему. Озон и его водные растворы коррозионны: они разрушают сталь, чугун, медь, резину, эбонит.

Устойчивыми являются нержавеющая сталь и алюминий (срок службы специально подобранной нержавеющей стали составляет 10—15 лет, а алюминия — 5—7 лет).

Для обеззараживания воды могут применяться ионы тяжелых металлов (серебро, медь, кадмий, хром и др.). Наибольшее распространение получило серебро. Формы введения серебра могут быть самыми различными:

погружение в воду серебряных пластинок или выдерживание воды в серебряных сосудах; бактерицидный эффект наступает через 8—24 ч;

использование посеребренного песка; время бактерицидного действия в этом случае снижается до 2—4 ч;

введение в воду солей серебра — раствора нитрата серебра, аммиачного раствора серебра и др.; время бактерицидного действия сокращается до 1—2 ч;

электролитический метод наиболее эффективен для приготовления серебряной воды; растворение серебра протекает при расстоянии между пластинами 5—12 мм, плотности тока 0,15— 5,0 мА/см2 и напряжении на электродах 3—12 В; время бактерицидного действия составляет 15—120 мин.

Выход серебра по току зависит от состава примесей воды и условий электролиза, а это, в свою очередь, оказывает влияние на бактерицидное действие и скорость протекания процесса обеззараживания воды. Взвеси и некоторые растворенные в воде соли могут образовывать на поверхности серебра плотные пленки, делающие электроды малорастворимыми, или же изменять электрохимические реакции на электродах. Так, наличие в воде хлоридов приводит к образованию на серебряном аноде пленки хлорида серебра, затрудняющей растворение металла и, следовательно, понижающей выход серебра по току. Содержание сульфатов мешает электролитическому растворению серебра из-за выделения на аноде кислорода. Для протекания нормальных процессов растворения серебра содержание хлора должно быть не более 30 мг/л, а ионов сульфатов — не более 50 мг/л.

Для обеззараживания воды ионами серебра в настоящее время применяются ионаторы различных марок

Метод обеззараживания воды ионами серебра особенно эффективен при необходимости ее длительного хранения, так как бактерицидное действие даже небольших доз серебра сохраняется на протяжении многих месяцев. Внутренние поверхности емкостей, предназначенных для длительного хранения воды, содержащей ионы серебра, рекомендуется покрывать следующими веществами: силикатной эмалью, лаком ХС-74, эмалью ХС-710, высококачественной штукатуркой, серебром или посеребренными металлами. Емкости из дюралюминия, стали, оцинкованного железа и других металлов, более активных, чем серебро, для долговременного хранения питьевой воды, содержащей ионы серебра, непригодны.

Обеззараживание воды ультрафиолетовыми лучами (длина волны от 200 до 295 мкм) имеет следующие достоинства (по сравнению с хлорированием): ультрафиолетовые лучи уничтожают не только вегетативные, но и спорообразующие бактерии; работа установок с ультрафиолетовыми лучами в большей степени может быть автоматизирована; эксплуатация их проще и безопаснее, чем хлорного хозяйства. К недостаткам можно отнести отсутствие бактерицидного действия в мутных водах, а также эффект «последействия». В настоящее время для обеззараживания воды применяются установки с погружными и непогружными лампами. Продолжительность эксплуатации ламп, гарантируемая заводами, составляет не менее 1500 ч.

Основным типом обеззараживающей установки, применяемой на городских водопроводах, является ОВ-АКХ-1 с лампами ПРК-7. На малых водопроводах производительностью до 20— 30 м8/ч применяются бактерицидные установки типа НВ-1П и ОВ-ЗН саргонортутными лампами низкого давления БуВ-30 и БуВ-бОП. Условия пуска, наладки, возможные неисправности и способы их ликвидации приводятся в паспортах к этим установкам.

Для сохранения прозрачности кварцевых цилиндрических чехлов периодически (1—2 раза в месяц) поверхность их необходимо очищать от осадка, выпадающего из воды. За состоянием чехла как при эксплуатации, так и при очистке стекла наблюдают через верхнее смотровое окно. Чехлы очищают в процессе работы установки, отключая последовательно отдельные секции камеры. Качество облучения контролируется обычными бактериологическими анализами.

Ультразвуковые волны с малой длиной и частотой более 20 000 Гц активируют процессы окисления и вызывают в некоторых случаях коагуляцию белков. Бактерицидное действие ультразвуковых колебаний возрастает с увеличением интенсивности ультразвукового поля и продолжительности воздействия его на воду. Недостатком этого способа обеззараживания является сложность создания достаточно мощных генераторов ультразвуковых колебаний, которые действуют более эффективно на крупные клетки и многоклеточные организмы, чем на бактерии, гибель которых является основной целью обеззараживания.

Комплексные показатели надежности

Рассмотренные характеристики эксплуатационной надежности позволяют осуществлять оценку безотказной работы объектов (устройств, оборудования, сооружений, систем) в процессе их эксплуатации и хранения. Но они не устанавливают соотношений между временными составляющими нормального цикла эксплуатации, не учитывают времени, затраченного на проведение регламентных и ремонтных работ, готовности систем к работе, удобства эксплуатации, технического использования оборудования и т. п.

Вероятность того, что объект окажется работоспособным в произвольный момент времени, кроме планируемых периодов, в течение которых использование изделий не предусматривается.

Отношение математического ожидания времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к сумме математических ожиданий времени пребывания объекта в работоспособном состоянии, времени простоев, обусловленных техническим обслуживанием, и времени ремонтов за тот же период эксплуатации.

Вероятность того, что объект, находясь в режиме ожидания, окажется работоспособным в произвольный момент времени и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени.

Характеризует степень влияния отказов элементов объекта на эффективность его применения по назначению. Определяется отношением объема выпускаемой продукции при отсутствии отказов QT к объему продукции, определяемому с учетом реальной надежности объекта (Qn).

Отношение разности заданной продолжительности эксплуатации и математического ожидания суммарной продолжительности плановых технических обслуживании и ремонтов за тот же период эксплуатации к значению этого периода.

Отношение времени восстановления ко времени безотказной работы, взятых за один и тот же календарный срок.

Отношение числа отказавших и изъятых в процессе профилактических осмотров элементов, деталей, оборудования в единицу времени к общему числу их.

Отношение времени восстановления к сумме времени восстановления и безотказной работы объекта, взятых за один и тот же календарный срок.